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The non-uniqueness of Yang-MiUs potential in the Coulomb gauge leads to a non-trivial vacuum structure featuring 
vacuum fields of both integer and half-integer topological charge, lnstantons fit in consistently with this picture and 
their interpretation is not changed. Integer and half-integer vacua are connected by certain meron solutions and the 
existence of half-integer charged states appears to be important for the confinement properties of the theory. 

The discovery of  instanton solutions to the Y a n g -  
Mills field equations [1 ] has revealed an interesting 
structure of  the Yang-Mil ls  vacuum [2].  This vacu- 
um structure is most easily seen in the A 0 = 0 gauge 
[2] and arises from the non-uniqueness of  vacuum- 
field potentials in this gauge. More recently, Gribov 
[3] has pointed out that non-uniqueness of  Y a n g -  
Mills potential  occurs even in the more restrictive 
Coulomb gauge, a so-called physical gauge. In this 
note, we study the Yang-Mil ls  vacuum in the Cou- 
lomb gauge and find that Gribov's non-uniqueness 
leads to a non-trivial vacuum structure featuring vac- 
uum potentials with bo th  integer and half-integer 
topological charge. We find a similar non-uniqueness 
in the gauge transformation which takes the instanton 
solution into the Coulomb gauge and correlate this 
to our Coulomb gauge vacuum structure. The exis- 
tence of  half-integer charged vacuum fields does not 
change the effects of  instantons in the theory,  but  
rather is related to the presence of  meron solutions 
of  the field equations. Recently it has been realized 
by various authors that half-integer charged field con- 
figurations are those which are relevant to the con- 
fining properties of  the theory. These fields give rise 
to a large Wilson vacuum-integral [4, 5] or a confin- 
ing Coulomb force [3, 6] .  

We begin with a description of  vacuum fields for 
SU(2) Yang-Mil ls  theory in the Coulomb gauge. We 
will characterize these fields by the value of  the top- 
ological charge 

* Research supported by the Energy Research and Develop- 
ment Administration. 

n = - (1 /24r r2 ) fd3xe i j k  Tr { A i A j A k } .  (1) 

In the Coulomb gauge a vacuum-field potential  A u is 
pure gauge 

A = u - l V u ,  A 0 = 0, 

satisfying the condit ion 

V - A  = V ' u - l v u  = 0. 

(2) 

(3) 

Following Gribov [3] and Wadia and Yoneya [7],  we 
consider gauge matrices of  the form 

U = e ia(r) x'~/r.  (4) 

Substituting eqs. (2) and (4) into eq. (1), we find that 
the topological charge for such a potential  is 

n = -Tr-  1 (a(r) - ½ sin 2 a ( r ) ) l ~ o .  (5) 

In order to avoid singularities ar r = 0 we must require 

4 0 )  = 0 (modulo mr). (6) 

To find the value of  a ( ~ )  as needed in eq. (5) we will 
analyse the Coulomb condition (3). For the ansatz 
(4), this condition becomes 

V2o~ - r - 2  sin 2c~ = 0. (7) 

With a change of  variable t = In r, this becomes the 
equation of  mot ion for a damped pendulum 

+ & - sin 2a = O. (8) 

Condition (6) requires that we impose the boundary 
condition, consistent with the linearized form of  the 
pendulum equation, 
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a(t) --* 8 e r, (9) 

for arbitrary (3. This gives us three types of solutions 
to eq. (8). For 6 = 0, we have the trivial solution 
~(r) = O. For 5 < O, we have the solution a(r) = 

al/2(r  ) where %/2(0) = 0 and %/2(o~) = - u / 2 .  Final- 
ly, for 6 > 0 we have a(r) = -cq/2( r  ). Substituting 
these results into eq. (5) we find three types of Cou- 
lomb gauge vacuum field configurations, 

A = 0 with n = 0, 

A = e - i~v2( r )x ' r / r  VeiCq/2( r )x ' r / r  with 

(10) 

n = 1/2, 

(11) 

and 

A = eiCq/2(r)x 'r /rve - icq/2(r)x 'r /r  with n = -1 /2 .  

(12) 
Note that since A 0 = 0 for vacuum fields in the 

Coulomb gauge, our Coulomb gauge vacuum poten- 
tials form a subset of those in the A 0 = 0 gauge. Let 
us define the gauge fields 

A = e -imc~ 1/2(r)x 'x/r  veima 1/2(r)x "Ur , (13 )  

A 0 = 0, where m is an integer. These are clearly in the 
A 0 = 0 gauge, but due to the non-linearity of eq. (7) 
they are not in the Coulomb gauge unless m = 0, 1 or 
- 1 .  For even m, these correspond to the m / 2  vacuum 

fields of the A 0 = 0 gauge with integer topological 
charge, which have previously been discussed [2]. 
For m odd, eq. (13) generates a series of vacuum 
fields with half-integer topological charge. These were 
not considered in [2] due to the restrictive boundary 
condition U-+r~= -+ 1. 

Conversely, we can transform A 0 = 0 gauge homo- 
topically non-trivial vacua into the Coulomb gauge. 
A representative of an nth vacuum is given by [2] 

A = e - i~(r)x ' r / r  V e  i~(r)x'r/r,  (14) 

13(r) = n t a n - l ( 2 a r / ( r  2 - a2)). (15) 

After transforming by U = exp ( i a x ' x / r )  and imposing 
the Coulomb condition, we obtain, 

723 " - r -2  s in2y = 0, (16) 

where 

7(r) = a(r)  + ~(r). (17) 

Since 

~(0) = 0, 

and 

v ( o )  = o ,  

we find 

o~0)  = 0 ,  

/3(o~) = nrr, (18) 

7(o~) = 7r/2,0, -rr /2,  (19) 

a ( ~ )  = (½-n)rr ,  - m r , - ( ~  +n)rr. (20) 

Thus the pendulum rotates exactly the right number 
of times to cancel the original homotopy up to -+ 1/2. 
Therefore all the homotopically non-trivial vacua in 
the A 0 = 0 gauge collapse into one of the cases n = 0, 
1/2 or - 1 / 2  when transformed into the Coulomb 
gauge. 

Let us now consider how the instanton solutions 
fit in with our three vacuum fields of eqs. (10)- (12) .  
Consider the instanton solution 

A u = ( R 2 / ( R  2 + 1))g- 13ug ' (21) 

with 
4 

R 2 = ~ x 2 (22) 
i=1 t 

and 

g = (x 4 - i x ' x ) / R .  (23) 

Note that as R -+ ~o the instanton field becomes a pure 
gauge and that 

g - - - - .  1 (24) 
/ , - - + + ~  

and 

g ------+ e -irr (25) 
[ - - +  _ ~ 

We have made a detailed study of the transformation 
taking the above instanton solution into the Coulomb 
gauge. We find that this transformation is not unique 
but leads to three types of Coulomb gauge instantons 
which are gauge equivalent but topologically distinct. 
For large R, the Coulomb gauge instantons can be 
written in the form 

, U - 1 3 u U  , (26) Au R ~  

with 

U = e iv(r ' t )x 'T/r .  (27) 

In the three cases we find case I: 

3~r, +co) = 0, 7(r, - ~ )  = -Tr; (28) 
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case II 

7(r, +oo) = ~l /2(r) ,  7(r, _~o) = _ a t / 2 ( r  ) _ n; (29) 

and case III 

7(r, +~) = al/z(r), 7(r, - ~ )  = al/Z(r) - n, (30) 

defining the three types o f  instantons.  The ins tanton 

winding number ,  

-I f d 4 x T r { ~  } (31) q =  
167r 2 

can be wri t ten  as a surface integral at large R in the 

form 

q = n + -  n_  + A, (32) 

where 

n+ - -1  fd3xe i j k  Tr { A i A / A  k} t + (33) 
- 24n2 =- 

represents the cont r ibut ions  f rom the two temporal  

boundaries  o f  our surface and 

4 =  1 f dtdSieiu Tr (AuAvAa}  r_ (34) 
24n2 - 

gives the con t r ibu t ion  f rom the spatial boundary .  For  

potentials  o f  the form (26)  and (27),  eqs. (33) and 

(34) can be explici t ly evaluated with  the results 

_ = 1 / -  r = ~  
n+ _n- l ( , ) , ( r ,  t) - g sin 2"),(r, ))lr=O It=_+~ (35) 

and 

- '  [ r=~ (36)  A = ¢r - l ( 7 ( r ,  t )  ~ sin 2./(r, t ] ) l  t=~° 
- - l t = - ~  

Subst i tut ing the three cases ( 2 8 ) - ( 3 0 )  in to  eqs. (35) 

and (36)  and using the fact that  ~ i /2 (0)  = 0 and 

a l l2  (~ )  = - ~ / 2  we can form the results summarized 
in table l ~ l .  We can now correlate  the non-uniqueness  

of  the Coulomb gauge ins tanton  wi th  the vacuum 

structure discussed above. Clearly the type  I ins tanton 

connects  two n = 0 field conf igurat ions  at t = +co wi th  

all o f  the con t r ibu t ion  to the winding number  coming  

from the sides o f  the in tegrat ion surface. The type II 

, i  In the results of table l we take the limit t ~ -+ ~ before 
taking the r ~ ~ limit of eqs. (35) and (36). Results for 
the Pontryagin index q do not depend on which order 
these limits are taken provided that the same convention 
is used in both eqs. (35) and (36). This is because the 
terms at r = ~ cancel when eqs. (35) and (36) are substi- 
tuted into eq. (32). 

Table 1 

Instanton type I lI IlI 

n÷ 0 1/2 -1 /2  
n_ 0 -1 /2  1/2 

1 0 2 
q 1 1 1 

instanton connects  an n = - 1 / 2  vacuum field at t = 

_~o to an n = +1/2 potent ia l  at t = 0% while the type 

III does just  the inverse wi th  a compensat ing  term 

coming f rom the sides o f  the integrat ion region once 

again. 
Finally,  we will discuss the relat ion o f  our half- 

integral vacuum fields to meron  solutions [8, 4] o f  

the Yang-Mi l l s  field equat ions.  The n = 1/2 Coulomb 

gauge vacuum potent ia l  

A = e -i~l/2 (r)x. r/r V e i~a/z (r)x. r/r (37) 

can be approximated ,  for large r, by  the pure gauge 

field 

A = i (~ X x)/r 2. (38) 

An impor tan t  difference be tween  eqs. (37) and (38), 

however ,  is that  the singularity at r = 0 o f  eq. (38) is 

smoothed  over  in eq. (37) and does not  appear there. 

Both eqs. (37) and (38) satisfy the Coulomb condi- 

tion. A part icular  form o f  the meron  solut ion is 

A - iGxjR 2. (39) 
When this is t ransformed into the Coulomb gauge we 

find the simple form 

A = ½i(1 + t /R)(~ X x)/r 2. (40) 

Thus, this meron  can be considered as a transi t ion 

field f rom the n = 0 potent ia l  A = 0 at t = _oo to the 

potent ia l  o f  eq. (38)  with n = 1/2 at t = +o.. Thus, the 

meron  represents a transi t ion f rom integer to half- 

integer vacuum states. Note ,  however ,  that  the above 

meron  solut ion connects  the A = 0 vacuum to the sin- 

gular n = 1/2 vacuum o f  eq. (38). We want  a field 

which interpolates  be tween  A = 0 and the non-singular 

field o f  eq. (37). Fur the rmore ,  this solut ion has an 

infinite action. 

Now the impor tan t  ques t ion is whether  there are 

f inite-action transit ions be tween  integer and half- 

integer worlds. At  present  it appears unlikely that  

217 



Volume 72B, number 2 PHYSICS LETTERS 19 December 1977 

there exist f inite-action solutions wi th  a fract ional  

index,  however ,  even in this case there are trajectories 

in the funct ional  space which start o f f  one o f  the 

worlds at t = - ~ ,  comes close to the o ther  world at 

finite t and returns to the original one at t = +o~. These 

trajectories would have a finite action. Then the phys- 

ical s i tuation is very much  like a resonance be tween  

different  worlds.  The Coulomb gauge seems to be a 

convenient  one to describe this phenomenon .  

We wish to thank Heinz Pagels for sharing wi th  us 

his observations on this subject and for communica t -  

ing to us some helpful  comment s  o f  R o m a n  Jackiw's  

concerning the solution o f  the pendulum equat ion.  

Note added. After  the comple t ion  o f  this work  we 

received a CERN preprint  by S. Scui to  in which our 

type II ins tanton is discussed. This subject has also 

been discussed in a recent Brookhaven preprint  by 

R. Jackiw,  I. Muzinich and C. Rebbi.  
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